131130 初版 131130 更新
f(x) = sin 2x として,\(-\dfrac{\pi}{2}\) ≦ x ≦ π まで,有名な値を表にする。
x |
\(-\dfrac{\pi}{2}\) |
… |
\(-\dfrac{5}{12}\pi\) |
… |
\(-\dfrac{3}{8}\pi\) |
… |
\(-\dfrac{\pi}{3}\) |
… |
\(-\dfrac{\pi}{4}\) |
… |
\(-\dfrac{\pi}{6}\) |
… |
\(-\dfrac{\pi}{8}\) |
… |
\(-\dfrac{\pi}{12}\) |
… |
0 |
2x |
-π |
… |
\(-\dfrac{5}{6}\pi\) |
… |
\(-\dfrac{3}{4}\pi\) |
… |
\(-\dfrac{2}{3}\pi\) |
… |
\(-\dfrac{\pi}{2}\) |
… |
\(-\dfrac{\pi}{3}\) |
… |
\(-\dfrac{\pi}{4}\) |
… |
\(-\dfrac{\pi}{6}\) |
… |
0 |
f(x) |
0 |
↘ |
\(-\dfrac{1}{2}\) |
↘ |
\(-\dfrac{\sqrt{2}}{2}\) |
↘ |
\(-\dfrac{\sqrt{3}}{2}\) |
↘ |
-1 |
↗ |
\(-\dfrac{\sqrt{3}}{2}\) |
↗ |
\(-\dfrac{\sqrt{2}}{2}\) |
↗ |
\(-\dfrac{1}{2}\) |
↗ |
0 |
x |
0 |
… |
\(\dfrac{\pi}{12}\) |
… |
\(\dfrac{\pi}{8}\) |
… |
\(\dfrac{\pi}{6}\) |
… |
\(\dfrac{\pi}{4}\) |
… |
\(\dfrac{\pi}{3}\) |
… |
\(\dfrac{3}{8}\pi\) |
… |
\(\dfrac{5}{12}\pi\) |
… |
π |
2x |
0 |
… |
\(\dfrac{\pi}{6}\) |
… |
\(\dfrac{\pi}{4}\) |
… |
\(\dfrac{\pi}{3}\) |
… |
\(\dfrac{\pi}{2}\) |
… |
\(\dfrac{2}{3}\pi\) |
… |
\(\dfrac{3}{4}\pi\) |
… |
\(\dfrac{5}{6}\pi\) |
… |
\(\dfrac{\pi}{2}\) |
f(x) |
0 |
↗ |
\(\dfrac{1}{2}\) |
↗ |
\(\dfrac{\sqrt{2}}{2}\) |
↗ |
\(\dfrac{\sqrt{3}}{2}\) |
↗ |
1 |
↘ |
\(\dfrac{\sqrt{3}}{2}\) |
↘ |
\(\dfrac{\sqrt{2}}{2}\) |
↘ |
\(\dfrac{1}{2}\) |
↘ |
0 |
x |
\(\dfrac{\pi}{2}\) |
… |
\(\dfrac{7}{12}\pi\) |
… |
\(\dfrac{5}{8}\pi\) |
… |
\(\dfrac{2}{3}\pi\) |
… |
\(\dfrac{3}{4}\pi\) |
… |
\(\dfrac{5}{6}\pi\) |
… |
\(\dfrac{7}{8}\pi\) |
… |
\(\dfrac{11}{12}\pi\) |
… |
π |
2x |
π |
… |
\(\dfrac{7}{6}\pi\) |
… |
\(\dfrac{5}{4}\pi\) |
… |
\(\dfrac{4}{3}\pi\) |
… |
\(\dfrac{3}{2}\pi\) |
… |
\(\dfrac{5}{3}\pi\) |
… |
\(\dfrac{7}{4}\pi\) |
… |
\(\dfrac{11}{6}\pi\) |
… |
2π |
f(x) |
0 |
↘ |
\(-\dfrac{1}{2}\) |
↘ |
\(-\dfrac{\sqrt{2}}{2}\) |
↘ |
\(-\dfrac{\sqrt{3}}{2}\) |
↘ |
-1 |
↗ |
\(-\dfrac{\sqrt{3}}{2}\) |
↗ |
\(-\dfrac{\sqrt{2}}{2}\) |
↗ |
\(-\dfrac{1}{2}\) |
↗ |
0 |
関数では,
表を作る作業をするべきである。
グラフはこの「三角関数方眼」が結構よい。
矢印キーで動きます。