f(x) = sin x として,-π ≦ x ≦ 2π まで,有名な値を表にする。
x | -π | … | \(-\dfrac{5}{6}\pi\) | … | \(-\dfrac{3}{4}\pi\) | … | \(-\dfrac{2}{3}\pi\) | … | \(-\dfrac{\pi}{2}\) | … | \(-\dfrac{\pi}{3}\) | … | \(-\dfrac{\pi}{4}\) | … | \(-\dfrac{\pi}{6}\) | … | 0 |
sin x | 0 | ↘ | \(-\dfrac{1}{2}\) | ↘ | \(-\dfrac{\sqrt{2}}{2}\) | ↘ | \(-\dfrac{\sqrt{3}}{2}\) | ↘ | -1 | ↗ | \(-\dfrac{\sqrt{3}}{2}\) | ↗ | \(-\dfrac{\sqrt{2}}{2}\) | ↗ | \(-\dfrac{1}{2}\) | ↗ | 0 |
x | 0 | … | \(\dfrac{\pi}{6}\) | … | \(\dfrac{\pi}{4}\) | … | \(\dfrac{\pi}{3}\) | … | \(\dfrac{\pi}{2}\) | … | \(\dfrac{2}{3}\pi\) | … | \(\dfrac{3}{4}\pi\) | … | \(\dfrac{5}{6}\pi\) | … | π |
sin x | 0 | ↗ | \(\dfrac{1}{2}\) | ↗ | \(\dfrac{\sqrt{2}}{2}\) | ↗ | \(\dfrac{\sqrt{3}}{2}\) | ↗ | 1 | ↘ | \(\dfrac{\sqrt{3}}{2}\) | ↘ | \(\dfrac{\sqrt{2}}{2}\) | ↘ | \(\dfrac{1}{2}\) | ↘ | 0 |
x | π | … | \(\dfrac{7}{6}\pi\) | … | \(\dfrac{5}{4}\pi\) | … | \(\dfrac{4}{3}\pi\) | … | \(\dfrac{3}{2}\pi\) | … | \(\dfrac{5}{3}\pi\) | … | \(\dfrac{7}{4}\pi\) | … | \(\dfrac{11}{6}\pi\) | … | 2π |
sin x | 0 | ↘ | \(-\dfrac{1}{2}\) | ↘ | \(-\dfrac{\sqrt{2}}{2}\) | ↘ | \(-\dfrac{\sqrt{3}}{2}\) | ↘ | -1 | ↗ | \(-\dfrac{\sqrt{3}}{2}\) | ↗ | \(-\dfrac{\sqrt{2}}{2}\) | ↗ | \(-\dfrac{1}{2}\) | ↗ | 0 |
平行移動したグラフなどを描くには次の方眼が便利である。