151116 初版 151116 更新

\(\cos\left(\theta-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\) を満たす θ
一般には,
\(\theta-\dfrac{\pi}{4} = \dfrac{\pi}{3}+2n\pi\),  \(-\dfrac{\pi}{3}+2n\pi\)   (n は整数)
すなわち,
\(\theta = \dfrac{7+24n}{12}\pi\),  \(\dfrac{-1+24n}{12}\pi\)   (n は整数)
0 ≦ θ < 2π では,
\(\theta = \dfrac{7}{12}\pi\),  \(\dfrac{23}{12}\pi\)  

\(\cos\left(\theta-\dfrac{\pi}{4}\right) >\dfrac{1}{2}\) を満たす θ
一般には,
\(-\dfrac{\pi}{3}+2n\pi < \theta-\dfrac{\pi}{4}\) \(< \dfrac{\pi}{3}+2n\pi\)   (n は整数)
すなわち,
\(\dfrac{-1+24n}{12}\pi < \theta\) \(< \dfrac{7+24n}{12}\pi\)   (n は整数)
0 ≦ θ < 2π では,
\(0 \leqq \theta\) \(< \dfrac{7}{12}\pi\),   \(\dfrac{23}{12}\pi < \theta\) \(< 2\pi\)  

\(\cos\left(\theta-\dfrac{\pi}{4}\right) <\dfrac{1}{2}\) を満たす θ
一般には,
\(\dfrac{\pi}{3}+2n\pi < \theta-\dfrac{\pi}{4}\) \(< \dfrac{5}{3}\pi+2n\pi\)   (n は整数)
すなわち,
\(\dfrac{7+24n}{12}\pi < \theta\) \(< \dfrac{23+24n}{12}\pi\)   (n は整数)
0 ≦ θ < 2π では,
\(\dfrac{7}{12}\pi < \theta < \dfrac{23}{12}\pi\)

その 1その 2その 3