151116 初版 151116 更新
例
\(\cos\left(2\theta-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\) を満たす θ
一般には,
\(2\theta-\dfrac{\pi}{4} = \dfrac{\pi}{3}+2n\pi\),
\(-\dfrac{\pi}{3}+2n\pi\)
(n は整数)
すなわち,
\(\theta = \dfrac{7+24n}{24}\pi\),
\(\dfrac{-1+24n}{24}\pi\)
(n は整数)
0 ≦ θ < 2π では,
\(\theta = \dfrac{7}{24}\pi\),
\(\dfrac{23}{24}\pi\),
\(\dfrac{31}{24}\pi\),
\(\dfrac{47}{24}\pi\)
例
\(\cos\left(2\theta-\dfrac{\pi}{4}\right) >\dfrac{1}{2}\) を満たす θ
一般には,
\(-\dfrac{\pi}{3}+2n\pi < 2\theta-\dfrac{\pi}{4}\)
\(< \dfrac{\pi}{3}+2n\pi\)
(n は整数)
すなわち,
\(\dfrac{-1+24n}{24}\pi < \theta\)
\(< \dfrac{7+24n}{24}\pi\)
(n は整数)
0 ≦ θ < 2π では,
\(0 \leqq \theta\)
\(< \dfrac{7}{24}\pi\),
\(\dfrac{23}{24}\pi < \theta\)
\(< \dfrac{31}{24}\pi\),
\(\dfrac{47}{12}\pi < \theta\)
\(< 2\pi\)
例
\(\cos\left(2\theta-\dfrac{\pi}{4}\right) <\dfrac{1}{2}\) を満たす θ
一般には,
\(\dfrac{\pi}{3}+2n\pi < 2\theta-\dfrac{\pi}{4}\)
\(< \dfrac{5}{3}\pi+2n\pi\)
(n は整数)
すなわち,
\(\dfrac{7+24n}{24}\pi < \theta\)
\(< \dfrac{23+24n}{24}\pi\)
(n は整数)
0 ≦ θ < 2π では,
\(\dfrac{7}{12}\pi < \theta < \dfrac{23}{24}\pi\),
\(\dfrac{31}{24}\pi < \theta < \dfrac{47}{24}\pi\)