はさみうちの原理
例1:
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
\(\sin\dfrac{n\pi}{6}\) | \(\dfrac{1}{2}\) | \(\dfrac{\sqrt{3}}{2}\) | 1 | \(\dfrac{\sqrt{3}}{2}\) | \(\dfrac{1}{2}\) | 0 | \(-\dfrac{1}{2}\) | \(-\dfrac{\sqrt{3}}{2}\) | -1 | \(-\dfrac{\sqrt{3}}{2}\) | \(-\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) |
an | \(\dfrac{1}{2}\) | \(\dfrac{\sqrt{3}}{4}\) | \(\dfrac{1}{3}\) | \(\dfrac{\sqrt{3}}{8}\) | \(\dfrac{1}{10}\) | 0 | \(-\dfrac{1}{14}\) | \(-\dfrac{\sqrt{3}}{16}\) | \(-\dfrac{1}{9}\) | \(-\dfrac{\sqrt{3}}{20}\) | \(-\dfrac{1}{22}\) | 0 | \(\dfrac{1}{26}\) |
こんな感じで,例を挙げていく。